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An examination is made of the theory and design of a thermocentrifu-
gal column with a small gap, which may be used for relatively rapid,
high-rate isotope concentration in the presence of a finite amount of
initial gas mixture.

The Clausius column, used to separate gaseous iso-
tope mixtures, has a relatively large optimum gap
between the hot and cold faces, for a gas pressure of
~10.1 x 10* N/m? The HETP value of such a column
is several centimeters, and, if ap = 0.01-0.02, we
require a total length of the column of the order of
several tens of meters, to obtain high separation co-
efficients (10>~10%), while the time to reach a steady
state is several tens of days.

In practice one meets the problem of concentrating
an isotope from specimens containing at most several
grams of material. For this purpose we may use the
method of thermal diffusion of gases at pressures of
the order of 10,1 - 10* N/m?, by reducing the gap to
a fraction of a millimeter, and keeping the circulation
flux optimal by rotational forces. This method gives a
sharp reduction in settling time, since the charge of
material in the column decreases in proportion to the
square of the gap, while the diffusion coefficient is
kept high. Similar equipment was described in [2],
but no calculation of the thermocentrifugal column
was given,

In this paper we analyze the operation of the ther-
mocentrifugal column and determine some optimal
parameters for it, including the time to reach equilib~
rium. The calculation presented may be applied, with
certain changes, to the equipment described in [3], in
which one of the discs is fixed. The radial (circulation)
flow of the column therefore increases due both to the
large relative velocity of rotation of the discs and to
the thermosiphon action.

The circulation flux, We shail examine the motion
of a gas or of a liquid inside a hollow rotating disc
whose walls are at different temperatures (Fig. 1).

The Navier-Stokes equation for steady motion is

p(v, V)V=—vp - nAv + (£ +n3) grad divv. (1)

The components of velocity and its derivatives in the
directions r, ¢ and z make up the table of values
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The remaining quantities are zero. Using (2), we re-
write Eq. (1) in components in the directions r (3) and

® (4):
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For simplicity the transfer coefficients are assumed
to be independent of temperature. In the first approx-
imation, we allow for three terms of Eq. (3)
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Putting p =~ (1 + zAT/2aT), dp/dr =~ pw’r, we obtain
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Solving Eq. (3") under the conditions vy(xa) = 0, we
have
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Substitution of Eq. (5) into Eq. (3) gives, with z = a/
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Fig. 1. Diagram of the thermocentrifugal column. The arrows

along the lateral walls indica

te the radial counterflow.
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The column calculation made below shows that for
AT/T ~ 1,a ~ 107*-10"% the optimal value of k’w? is
less than the expression (1/2v3)(AT/T) by 2—3 orders.
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Fig., 2, Dependence of HETP on radius

for a column with constant gap ( " _
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are for 6 =0.05, 0.2, 1, respectively,

Therefore, Eq. (5) gives an almost exact value of the
linear radial flow velocity. Further, Eq. (4) deter-
mines the conditions of excitation of the secondary
azimuthal flows under the influence of the Coriolis
acceleration, Solving Eq. (4) and using Eq. (5) and
(dp/8¢) = 0, p ~B(1 + zZAT/2aT), n = const (z), we
have

v¢=mr+br[——é’%a‘z+%zs—— 22; %%_—
_2 AT & _AzT_]. (6)
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To estimate the value of the additional velocity of
rotation of the gas Avgp =vy — wr, we put z =+ a/2, r=
=30 cm. Then Avy = (3/80) a’br, the linear velocity of
rotation decreasing by Avgp in the cold part, and in-
creasing in the hot part. At a pressure of 10.1 - 10*
N/m? and a gap of 0.5—-1 mm, for methane under the
conditions chosen above, the optimal value of vp is
15-30 cm/sec, while the quantity Avyp is an order
lower. The angular velocity of the secondary azimu-
thal flow is then only ~0.3% of wopt- Therefore, the
sign of approximate equality may be omitted in (2).
The additional velocity Avp has a favorable influence
on the operation of the column, smoothing out the
azimuthal nonuniformities of concentration due to
nonuniformities in the gap. The linear velocity aver-
aged over z is
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The circulation flux in the no-yield regime is
J =2nranv, =2 B=ria. (8)

In (8), J is proportional to r?, As will be seen
later, this relation is not the best from the viewpoint
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of maximum separation. Any change of J(r) is possi-
ble at the expense of AT/T =f(r) and also a = f,(r).

It may be seen from the foregoing that for the vari-
ables a and AT/T, the solutions (7) and (8) remain in
the same form. We note only one special feature of
the motion of the gas in the column. Above we put Vg, =
= 0. We will show that this condition is well satisfied
in practice for columns with a small gap. In principle,
v, # 0, since the transfer of fluid from the hot stream
moving towards the center to the cold stream affords
the possibility of increase of the radial velocity with
increase of radius [2], because in practice the changes
of gas density are small (see below). We will estimate
the quantity ¥, by the following simple method. For a
constant mean density, we obtain a(dv,/9r) = ¥, from
the condition of continuity div v = 0, and therefore

¥z = 2aB, and, correspondingly,

v /v, = 2a/r. 9)

Equation of the thermocentrifugal column. The trans-
fer processes for one isotope with relative concentra-
tion ¢ are described by the equations

T (e;—ey) = 4 rnDe%— —igc—0,  (10)

nprde D “*ATc(1_c)_—c‘“CII}. (11)
or a { 24T a

Relation (11) for internal processes in the column is

derived from the condition div j = 0, where j = nv,

v = v+ Vg + v, derivatives with respect to z being

approximated by a finite-difference relation.
Eliminating (cy—~cyp) from Egs. (10) and (11), and

using Eq. (8), we obtain
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The solution of Eq. (12) for the case i) = 0 has the
form
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(13)

Here A = apAT/2aT; % = 2aB/D;B = ¢/(1-c); B-see (7).
The solution of Eq. (13) is obtained under the con-
dition B = const(r), i.e., AT/T and a are chosen to
be independent of r. We will examine the optimal par-
ameters of the thermocentrifugal column from the
viewpoint of maximum separation in a given section of
the radius. We assume that the flux J as the form (8)
and that solution (13) is applicable. We write Eq. (13)
in the form

Ar=r—rn=V w2Drig"" + 8D, @ — 1) —r (14)
From the equations (Ar)'rl =0, (Ar)"r1r1 > 0 we find
that Ar = Armin if

2 _ 8 De _—up.
Mexw=—7 7 ; (15)
we substitute Eq. (15) into Eq. (13) to obtain
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ar= 22 l/& @' —qg ™). (16)
n D

0 we find that Ar — Arpyin,

Hence

From the equation (Ar)§ =
ifn—0:

A rin = 2V2 l/ LDey, ng, (17)

but it is seen, from Eq. (15), that then r; — «. Thus,
absolutely minimum values of Ar for given y and q are
practically unattainable in a column with constant gap.
We note, that Ar,,;, corresponds to minimum HETP,
It is seen from Eq. (12) that here the HETP is the
variable quantity

\ (%r /B ov3./D.
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We see that H is a minimum if conditions (15) and (17)
are satisfied. Then
Hmm——Ql/2 l/De =2V 2a %-

Finally, we will point out the main deficiency of the
column with constant gap. It follows from Eq. (16)
that Ar varies as a power of q. This dependence is not
favorable, since, if we choose the r; small enough,
i.e., n large enough, then the condition H = H,jy is
satisfied only on the small section Ar. The separation
diminishes appreciably with change of column radius
(Fig. 2).

Optimization of circulation flux to obtain maximum
separation on an arbitrary section of the radius. We
will find the circulation flux function J(r) which gives
the maximum separation on a given section of the ra-
dius. We put vy = const; this satisfies the requirement
that the relative temperature gradient be constant as
a function of radius as @ and AT/T vary. To the calcu-
lations we consider that iy = 0.

From Egs. (10) and (11) under these conditions we
have

Ge _ IV o, (19)
or Jipr?

where v = 2mDry, . = 87T2n2DDe. We integrate Eq. (19)
on the given section Ar of the radius

Ing= S AL (20)
JEurt

From the Euler equation, we find for the integrand in
Eq. (20)

S =V pr. (21)
With condition (21) it follows from Eq. (19) that

-8ing, (22)
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where

2T /T

5=V D

The value of Ar in Eq. (22) coincides with Eq. (17),
but now the condition H = Hy,jp is satisfied for all
values of r. Of course, in practice r always satisfies
condition (9) as well,

From expression (8), with vy = const, we have

a=a Vi, (23)

i.e., to obtain a linear dependence of J(r) a weak (e.g.,
step-by-step) decrease of the gap with increase of
radius is sufficient.

We will examine the question of relative angular
velocity. For the optimal circulation flux, it follows
from Egs. (8), (21), and (23) that

96D T
I 3" 1. (24
pair, \AT |,

48a,.Dn
BY a]‘r 1
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Finally, using the value wgpt, we will calculate

the pressure drop on the section Ar:

Ap = SEmgptrdr,
Weopt being 210? rad/sec for the ma]orlty of gases,
when P ~ (10,1-100.1) - 10* N/m?2, 2a = 0.05-0.1 cm,
AT/T ~ 1,r; =10 em, ry; = 50 cm. Therefore, Ap/p %
£ 10-%, i.e., we may neglect the variations in density
along the radius.

Unsteady operation of column, and settling time.
The variation of the concentration of one of the com-
ponents in the space bounded by radii r and r, is equal,
in the no-yield regime, to

a £

4m anD,r o _ = ——j dnnacpdp; (25)

[J(CI - Cn)]r ar at

the continuity equation for the light component is
dc

divj, = —n —. 26
j Py (26)

We write the flux j, in the general form:
jc:Cj"!“jD; jD =jD,r+jD,z; j = nv. (27)

From Egs. (26) and (27), with the conditions div j = 0
and v, < vy (see Eq. (9)) and ]d r =nDg(8c/dr) <« C]r
(the latter follows from the fact that nDg(dc¢/dr)< j,.

* (creqp) and (e1—eq) << g, 11), we obtain

. dc nD C;— ¢y ()c
— — = lye(l—g——21} = 28
! ar a {V ( ) a ] ()t - (28)

Later on we will put ¢ « 1 in Eqs. (25) and (28); J and
a are determined from Eqgs. (21) and (23):

r
DDe dc 'gc__ ,
ac Sy ) dc '
VanD, 5 —Dive— —a—re (28)
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Eliminating cy—cyy, we find

or? or 4r

2,
0% 666 l(ac Gc) 1 _a_c_ 29)

N 2D, ot

Here we have omitted terms of order a?in Eq. (29),
this being equivalent to the quasi-steady condition

div jo = 0 ordinarily assumed. We note that in the
steady regime this equation has the solution (22), ow-
ing to the linear independence of the two terms on the
left of Eq. (29).

Under the condition 6 »1/4r we may neglect the
second term on the left of Eq. (29). The solution of
the equation in that event is given, for example, in
[11.

As an example we will examine the concentration
of radio-carbon, ‘starting from the isotope mixture
c!?My, Weputr;=5cm, Ar =50 cm, 2a;= 0,04 cm,
p =506+ 10 N/m?, (AT/T);=1, T =273°K; D ~0.05
cm?/sec, p/ ~6.5 sec/cm?, aT =0.015 m? (for the
mixture C% 13H4, according to the data of [4], aT =
=0.0077). We assume the condition D, = 2D.-1t is
possible that in a well-designed column D, < 2D, since
the parameter Re for Vp oy, corresponding toH =
vp2 _ 2 1/2DD65 -

n n
=6, i.e., is relatively small. Morcover, nonuni-
formities of the gap will be partly compensated for
by the additional azimuthal flow Av,. Then H = 0.08 cm,
8 = 0,094 cm™! and q = 110. The value of Wopts
according to Eq. (24), is equal to 61 rad/sec, i.e.,
v =~ 600 min~!, The relaxation time for a column
fed with material from a central reservoir (r =r,)
and closed at the end r = ry, is

= 2A 12
D,[(8Ary? + 2u]

= Hpip (see Eq. (18)), is equal to

(30)

where u ~ 1 [1]. Hence 7 ~ 2+ 10° sec.

The example given provides quite a good illustra-
tion of the advantages of the thermocentrifugal column
with a small gap. For a thermogravitational column
with the same gap, the optimal pressures are several
tens of atmospheres, and the settling time and the flow
rate of the material increase correspondingly, Fur-
thermore, it is considerably easier, with a small gap,
to satisfy the condition that the gap be uniform in a
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plane column, and in this case the rotating system
will be completely free of azimuthal temperature non-
uniformities, Of course, the basic difficulties in
making up the column lie in obtaining a uniform gap
around the azimuth, An accuracy of machining the
metal of the order of 10 microns is required, over

a substantially large area (r ~50 c¢m). In the case of
a gap 2a¢4 = 0.3 — 0.5 mm, Ar = 50 cm for relatively
small values of oy = 0.01 — 0,02 the quantity q is
102-10°,

NOTATION

p is the pressure; p is the mass density; n is the
mole density; AT isthe temperature drop between
faces; c is the mole fraction of isotope being concen-
trated; 1 and cyy are the mean concentrations in cold
and hot phases; ¢ is the initial relative concentration;
71 is the dynamic viscosity; ry, ry are the minimum
and maximum radii of working part of column; Ar =
=1y — ry; @ is the azimuthal coordinate; z is the axial
coordinate; @ is the half width of gap between faces;
a;=a(ry); w is the angular velocity of rotation; v is the
frequency of rotation; Wopt is the corresponds to maxi-
‘mum separation; vy is the radial linear velocity; Av,
is the velocity of rotation of gas under action of Corio-
lis forces; vy is the velocity of motion between faces;
D is the diffusion coefficient; Dg is the equivalent dif-
fusion coefficient; o7 is the thermodiffusion coeffi-
cient; J is the radial circulation flux; j is the gas flux
density; j. is the flux density of isotope being concen-

-trated; ik, ¢y are the flux and relative concentration

in sample; €¢ = Hyin 6 is the equivalent enrichment
coefficient; H is the HETP of column; y =£¢/q; q is
the column separation factor; 7 is the relaxation time.
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